
Many IT Managers and Data & Solutions Architects are constantly faced with the problem of
managing large and complex data sets that grow exponentially. We define large data sets as
being measured in Petabytes or even Exabytes. This requires database and system architectures
beyond traditional single-node relational database management systems (RDBMS), and not all
IT organizations have the capability to deal with these complex systems. 

Here we outline when these large-scale systems are necessary, the trends in data system design
as the data volumes have increased, and how these techniques are used in our proprietary tick
history platform that forms the core of our DataHex SaaS solution.

THE EVOLVING LANDSCAPE
OF DATA STORAGE

 Stephen Johansen - Head of Technology
RoZetta Technology

1 of 5



www.rozettatechnology.com/tickdata/

Defining the Problem of Scale

For most of the second half of the 20th century, the
single node RDBMS was the data storage workhorse at
the heart of every IT architecture. These systems tended
to be installed on specialized, high-end hardware, and
this required a team of specialist Database
Administrators (DBAs) who ensured they remained
reliable and fulfilled queries in a reasonable time. Many
enterprises would standardize on one database vendor
and ensure their teams were fully trained on that single
database technology.

RDBMS systems were well understood by Database
Administrators, Application Developers and Data
Analysts, all of whom interacted with the database
using variations of SQL. It was well understood how to
structure the data, index it for optimal performance,
and tune SQL queries to make the best of the hardware
and software.

Data volumes tended to grow linearly once a system
was established, so it was feasible to manage growth by
buying larger servers, referred to as vertical scaling.
These systems were general-purpose, with almost any
application data storage or analytical problem solved
with the same tool.

This changed completely in the late 90s with the rise of
the web and the explosive growth in data generated as
consumers connected to it. Data grew exponentially
rather than linearly, and there was simply no way to
keep buying bigger servers. The new, big web giants like
Google required data management systems outside the
expertise of most enterprises.

These companies couldn’t outsource the engineering of
these software and hardware systems to the specialist
database vendors, so they hired Computer Science
talent directly out of universities to develop systems to
manage this new scale of data.

www.rozettatechnology.com enquiries@rozettatechnology.com

Horizontal scaling: Growing beyond a single node
to lots of nodes.
Disaggregation: Splitting components of the
database into different specialist systems.
Data Services: Buying or building these specialist
systems independently from each other, often
delivered as Cloud services.
Data Vendors: Buying the data in a useful form
directly and letting specialists handle data
management.

This gave the industry several new ways of managing
big data sets:

Growing Beyond One Node

The world got its first real glimpse of this when Google
started producing its seminal data management papers
in the early 2000s. With the Google File System (GFS),
Map Reduce and BigTable papers, the industry realized
that it was possible to build systems completely
engineered for scale. These systems were built as
horizontally scaled systems, where large nMap reduce
numbers of low-cost commodity servers were chained
together with intelligent software and tended to be
specialized for specific workloads. The BigTable paper
alone was the catalyst for the non-relational, NoSQL
database movement that has dominated the last
decade or so of data management thinking.

All parts of a single node database work together to
ensure system reliability and good query performance
to the end-user. However, as you need to scale beyond
what a single node database can handle, the network
becomes a critical system component. This introduces
latency and reliability issues. This trade-off becomes
necessary beyond a certain scale, so these new systems
embraced the fact components could fail or become
degraded and planned for this in advance.

2 of 5

http://www.rozettatechnology.com/tickdata/
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
https://en.wikipedia.org/wiki/NoSQL


www.rozettatechnology.com/tickdata/
www.rozettatechnology.com enquiries@rozettatechnology.com

Network Partition (P): This is a situation where not
all of the nodes in the system can see each other
and agree on the state of the overall system.
Consistency (C): In the face of a network partition,
do we expect all nodes to continue to see every
change applied in order (strict consistency) or do
some nodes see stale data for some time (eventual
consistency)?
Availability (A): In the face of a network partition do
we expect the overall system to remain available for
reads, writes or both?

Database storage: The files on the disk where the
actual rows of data are stored.
Database buffer or cache: An in-memory copy of
the most frequently accessed chunks of data.
Database indexes: Copies of parts of the database
tables that allow for fast access to particular rows
based on the values in a field that is indexed.
Query engine: The software processes that take
end-user connections and plan and execute their
SQL statements and return results to them.
Transaction Log: A log of every change to the
database that must be written before that data is
considered safely stored in the database.

Eric Brewer’s CAP theorem captured this, in which in its
current revision has three definitions involved:

Systems tend to either be CP systems, which become
unavailable in the face of network partitions but always
show a consistent view of the system state, or AP
systems, where the system remains available but clients
see different states of the data until the network
partition is resolved and the data becomes consistent.

Regardless of which system is chosen, Application
Developers need to understand these trade-offs. Some
of the work traditionally done by specialist DBAs now
needs to reside with the development teams that build
on top of these data systems. 

The shape of the data also becomes an important
factor, as these systems also give up general purpose
query performance to become very good at delivering
specific query types at scale.

Splitting the Database

A traditional database was made up of several parts:

As data management systems scale, it is often
necessary to disaggregate these parts into separate,
specialist systems. Google showed this was possible by
splitting their data storage onto their Google File
System (GFS) from their computing layer query engines
like Map Reduce and BigTable. 

This directly led to the open-source Hadoop project,
which was an attempt to build a similar system for
anyone that needed to manage big data sets. Hadoop
had its separate storage (HDFS), compute (first
MapReduce, then later YARN), and database query
layers (HBase, Hive, Impala, Spark).

This allowed for much larger systems than would ever
have been possible on single node databases. It meant
adding networking and system complexity within a
system and between systems.

Much of the disappointment arising from the failure of
Hadoop and Data Lake projects of the mid-2010s
stemmed from the amount of overhead required to
manage this complexity and the gap between the
promises these systems made and the delivery of actual
business value created.

This pattern also led to the rise of specialist platform
engineers and data engineers responsible for managing
these complex systems and ensuring data flowed into
and through them efficiently.

These roles needed to understand distributed systems
at a level not necessary for traditional specialist DBAs
and ETL (Extract-Transform-Load) Engineers and as a
result were much harder to hire for.

3 of 5

http://www.rozettatechnology.com/tickdata/
https://en.wikipedia.org/wiki/CAP_theorem
https://hadoop.apache.org/


www.rozettatechnology.com/tickdata/
www.rozettatechnology.com enquiries@rozettatechnology.com

Engage Trusted Partners to 
Manage the Data

The pure complexity of what is required to manage
petabytes or exabytes of data is not the only reason it
can make sense to let specialists do the work for you. All
data requires the knowledge of Subject Matter Experts
(SMEs) to ensure that the data is available and
understand the business-specific context that data
resides in and how to ensure it is accurate, clean, and
free from errors. 

This has led to many businesses outsourcing the
management of specific data sets and then acquiring
that data in ready-to-use formats, sometimes referred
to as ‘application ready’. It has the added benefit of not
having data management as a core business
competency in a non-technology industry. This is the
key concept behind our DataHex platform.

RoZetta’s DataHex SaaS Platform

The key idea behind RoZetta’s management of tick
history is to ensure anyone that needs capital markets
data, at the exchange or even instrument level, can do
so in a timely manner. The current generation system
was built entirely on the cloud and is built on several
systems working together.

We manage this complexity on behalf of our customers
so they don’t require large teams of cloud & data
engineers in-house. We marry our large-scale data
management knowledge with our in-house Capital
Markets Data SMEs, who ensure that the data is
accurate, and our technology ensures that a client’s
SMEs have the tools required to do their job.

Rozetta Technology has a proud history of managing
capital markets data, and our ever-evolving
management of tick history has made the shift from on-
premises to cloud-based technology. 

4 of 5

Database Cloud Services

At the same time, as data systems were distributed to
manage massive volumes of data, a revolution was
happening on how IT services were provided and
consumed. The introduction of Amazon Web Services
(AWS) and their later competitors gave the world a
business model where it was possible to only pay for
the amount of IT services used. It also had the side
effect of pushing a lot of complex system management
onto specialist engineers working for those cloud
vendors, doing what AWS calls “undifferentiated heavy
lifting”.

Moving systems to the cloud was a massive mindset
shift and initially met with skepticism, however almost
15 years after AWS started there is not an industry that is
not heavily invested in this model of IT delivery. 

While some workflows are hampered by tight latency
requirements, such as High-Frequency Trading (HFT) or
compliance and regulatory surveillance, much of the IT
world is invested in building on cloud-first and
designing their architectures in a way that takes full
advantage of the Cloud Native approach.

This had a massive impact on how complex data
systems are built. If you only pay for the storage you
need, only buy the specialist data systems required for
your current scale compute resources, and most
importantly, turn them off when not required, it opens a
lot of possible system architectures that were not
previously feasible to build in-house. As the big Cloud
providers invest heavily in building and managing state
of the art data systems and specialists, single product
Cloud-Native businesses like Databricks and Snowflake
build on top of these platforms, the range of choice
becomes almost endless.

That choice however also allows for ever more complex
systems to be built. While some of the TCO is offloaded
to the cloud vendors, and the risks involved in investing
heavily in hardware and software upfront are removed,
there is still endless scope to build systems that are
hard to manage.

http://www.rozettatechnology.com/tickdata/
https://aws.amazon.com/
https://azure.microsoft.com/en-au/
https://cloud.google.com/
https://databricks.com/
https://www.snowflake.com/


www.rozettatechnology.com/tickdata/
www.rozettatechnology.com enquiries@rozettatechnology.com

Efficiently ingest raw market data and make it
available for users in a range of roles.
Efficiently store multiple petabytes of historical
data.
Allow users to have a subset of this data delivered
to them, from the entire data set to the history for a
single stock exchange and down to a single time
slice of data for a single instrument code.

Modules within Our DataHex SaaS platform are
designed to:

RoZetta has built DataHex based on several key cloud-
based technologies that promise timely and accurate
capital markets data. It is an example of a
disaggregated database system architecture, heavily
tuned to a particular set of use cases.

We store historical capital markets market data in a
proprietary binary partitioned data format on the AWS
S3 service at the lowest level. We chose S3 primarily for
its incredible reliability and relatively low storage cost.
Glacier storage service was not an option as users
within our client base need all the history readily
available. We also build a proprietary distributed index
layer on top of S3 to allow for fast retrieval of individual
instruments and time slices for both data previews and
full data extracts. This role would use indexing within a
traditional database, not as a separate service.

The indexing and tuning of this database are critical to
the performance of data discovery by our end users.

RoZetta has a separate Amazon Aurora cluster that
houses our metadata layer. This layer stores reference
data about instruments and other entities that aid with
searching for a portfolio of instruments to be extracted.

Our data loading process is built to efficiently populate
both the binary storage layer on S3, the indexing layer
and the metadata layer in Aurora to ensure there is no
disparity between what we store and what we can find.
This process is built on custom code executed as a fleet
of Docker containers on the Elastic Container Service
(ECS). We maintain some pools of compute for this
service on constantly running EC2 virtual machines to
ensure we can always meet our load SLAs. For historical
backloads we often run these container tasks on the
serverless Fargate ECS backend, which allows us to only
pay for the actual run time of our tasks. 

These kinds of trade-offs are common when building
cloud-native services and we have taken our business
context into account when making these choices.

Finally, our data extraction and fulfillment service run
custom pipelines on top of ECS container tasks and
makes heavy use of the indexing service to find the
most efficient spot on S3 to start scanning for a
particular time period, exchange and set of instruments
to extract. We define the exact dimensions we need to
access the raw data, which lets us optimize this
fulfillment process. The loading and extract services act
as a specialized subset of the query engines found in
traditional database systems.

5 of 5

Conclusion

The capital markets services industry continues to find new and interesting market data to inform their trading
strategies. That means platforms must continue to scale to store and serve the demand for this data. We also have
trends like the rise of cryptocurrencies, a mind-boggling array of new instrument types and the catch-all term of
Alternative Data that only means data volumes will continue to grow. RoZetta’s DataHex SaaS platform will continue
to evolve to meet this need. Our team of engineers and market data experts can take the challenge of managing
these complex systems away from your business and let you focus on maximizing the return on your data assets.

Contact our Head of Technology, Stephen Johansen, via email at stephen.johansen@rozettatechnology.com
to find out how we can maximize the value from your data assets. 

©2022 RoZetta Technology. All rights reserved. 

http://www.rozettatechnology.com/tickdata/
https://aws.amazon.com/s3/
https://aws.amazon.com/glacier/
https://aws.amazon.com/rds/aurora/?aurora-whats-new.sort-by=item.additionalFields.postDateTime&aurora-whats-new.sort-order=desc
https://aws.amazon.com/ecs/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&ecs-blogs.sort-by=item.additionalFields.createdDate&ecs-blogs.sort-order=desc
https://aws.amazon.com/fargate/
https://www.rozettatechnology.com/contact-us/


www.rozettatechnology.com/tickdata/
www.rozettatechnology.com stephen.johansen@rozettatechnology.com

The Evolving Landscape
of Data Storage
Stephen Johansen
Head of Technology, RoZetta Technology

6 of 6

http://www.rozettatechnology.com/tickdata/

